Oyster and fish integrated aquaculture in earthen ponds for efficient production and environmental conservation Maria Emília Cunha, Hugo Quental-Ferreira, Laura Ribeiro, Florbela Soares, Pedro Pousão E-mail: micunha@ipma.pt Estação Piloto de Piscicultura de Olhão - EPPO Av. 5 de Outubro s/n 8700-305 Olhão, Portugal ## **Marine Coastal Aquaculture in Portugal** ## **Earth Pond Aquaculture in Portugal** # Six years of research | Period | Main Objetive | Project | Tested Species | Main Result | | | |-------------------|---|----------------------------|--|--|--|--| | 2010 | Study polyculture of bream species; Can oyster grow in fish ponds? Which structures to use for oysters? | SEAFARE | 5 seabream species;Portuguese oysters;Sea cucumbers | Mesh bags much easier with less
biofouling; Acceptable growth but high
mortality due to Spawning; | | | | 2011
-
2012 | What is the oyster performance in floating mesh bags? What is the effect of oysters in sediment diversity? | SEAFARE | Gilthead seabream;Portuguese oysters | Higher growth and lower mortality
than 2010 but high variations
among ponds; Higher diversity where oysters are
present | | | | 2013 | Improving technical performance + combination with meagre | SEAFARE | Meagre;Gilthead seabream;Pacific oysters triploids | Higher growth and survival than previous years; Structures improved for higher production efficiency | | | | 2015 | New structure, two contrasting
densities: which give higher
revenue and effect in water
quality? | DIVERSIAQUA | Meagre;Gilthead seabream;Pacific oysters triploids | Very good structure efficiency,
easier to handle bags inside water, Higher growth and survival than
Ria Formosa Lagoon and previous
years | | | | 2016 | What is the combined effect of
oysters and macroalgae on
water quality and
phytoplankton density? | IMTA-EFFECT
DIVERSIAQUA | Meagre;White seabream;Flathead mullet;Pacific oysters triploids | Oysters contribute with nutrients to
maintained phytoplankton
production; Oyster commercial size (80 grams)
attained in 8 months | | | | 2017 | What is the limiting production
level of oysters in fish ponds
under two oyster densities? | IMTA_EFFECT
DIVERSIAQUA | <u> </u> | Dissolved oxygen levels don't
seem affected by higher oyster
densities. Trial still not finished. | | | # **Study site** # IPMA - EPPO Instituto Português do Mar e da Atmosfera – Estação Piloto de Piscicultura de Olhão Parque Natural da Ría Formosa ## **Experimented Structures for Oyster growing** Open system with air supply Daily water renovation: 25% **Husbandry** Feed: 2.2 kg day⁻¹ tank⁻¹ **Oyster cleaning: monthly** # **Experimented Structures for Oyster growing** #### **Rearing conditions** #### **Growout management** #### **Monitoring** - Temperature - Dissolved oxygen (Automatic and manual probes) - pH e turbidity - Water renewal - Fish feeding and daily feed ration #### Sampling - Monthly average weight of 250 oysters (5 groups of 5 different bags) - Mortality in each of the 5 bags manipulated - Average weight and length (TL) of 100 meagre in March, June and September ## **Oysters tending** #### Oyster microbiological quality (Annex II, Chapter II of Regulation (EC) 853 and 854/2004, as amended by Regulation (EC) 1021/2008) Better microbiological quality of the IMTA oysters compared to Ria Formosa lagoon ## **Oyster palatability** # Composition of testing board: Eight male from 40 to 54 years old with 10 or more years of professional experience - 4 cooking chefs (1 of them with higher education) - 1 chef of purchases 2 restaurant/bar/wine chefs - 1 enogastronomy specialist (with higher education) # Comparison of performances #### **Comparison of performances** Higher mortality for the Pacific oyster (2x higher than Portuguese oyster) # **Bottom quality/Benthic Fauna** | Tanks:
Data: | Fish | IMTA | Fish | IMTA | Fish | IMTA | |-----------------|------|------|----------|------|------|------| | Mai 11 | GOOD | HIGH | MODERATE | HIGH | GOOD | HIGH | | Set 11 | GOOD | GOOD | GOOD | HIGH | HIGH | HIGH | | Dez 11 | GOOD | HIGH | GOOD | GOOD | GOOD | HIGH | | Mar 12 | GOOD | HIGH | GOOD | HIGH | GOOD | GOOD | | Jun 12 | GOOD | HIGH | GOOD | GOOD | GOOD | HIGH | | Set 12 | GOOD | HIGH | GOOD | HIGH | GOOD | HIGH | **M-AMBI Index** (Borja et al., 2004; Muxika et al., 2007): program AMBI v4.1 (http://www.azti.es) ## **Results: Water quality** | Parameter | LFHO | HFLO | |------------------------------------|----------------------------------|----------------------------------| | Temperature (°C) (n = 906) | $23,4 \pm 4,36$ (13,0 – 30,4) | $23,5 \pm 4,33$ (13,1 – 30,4) | | Salinity (PSU)
(n = 906) | $35,9 \pm 0.79$ (35,36 – 37.31) | $36,0 \pm 0.79$ (35,39 – 37.41) | | Dissolved oxygen (mg/L)
n = 906 | 5,9 ± 1,88 ***
(3,89 – 10.88) | 5,5 ± 1,94 ***
(3.47 – 12.91) | | pH
n = 906 | 1 8,0 ± 0.31 **
(7,66 - 8,72) | 7,9 ± 0.33 **
(7,23 – 8,73) | | Turbidity (FNU)
n = 906 | 5,3 ± 2,32 ***
(1,2 - 12,5) | 18, 4 ± 4,44 ***
(7,9 – 31,3) | | Chlorophyll <i>α</i> (μg/L) n=27 | 9.2 ± 11,09 * (0.9 -44.9) | 18.6 ± 21,18 *
(0.9 -63.0) | # **Economic impact** | | TREATMENT | | | |---|-----------|--------|--| | | FISH | OYSTER | | | Revenue (10 ³ Euros) | | | | | Meagre | 211,95 | 111,38 | | | Oysters | 16,2 | 86,4 | | | Total | 228,15 | 197,78 | | | Cost (10 ³ Euros) | | | | | Meagre juveniles | 28,26 | 14,85 | | | Oysters | 1,99 | 10,6 | | | Feed used | 82,43 | 45,29 | | | Aeration | 0,79 | 0,47 | | | Wasted Nitrogen | 88,9 | 48,75 | | | Wasted Phosphorus | 4,25 | 2,33 | | | Total | 206,62 | 122,29 | | | Total profit (10³ Euros) | 21,53 | 75,49 | | | Cost per Kg of produced biomass (Euros) | 3,94 | 2,28 | | # Last experimental conditions $A \approx 500 \text{ m}^{2}$; $V \approx 750 \text{ m}^{3}$ ## Results — OYSTER mean weight ## Results — Time of Air Injector #### **Conclusions** The proportion of oysters to fish should be determined by their selling price # Thank you!!! Questions?